MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 7108 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 15 to 34
11
Fatigue Strength, MPa 210 to 240
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 380 to 410
210
Tensile Strength: Ultimate (UTS), MPa 610 to 620
350
Tensile Strength: Yield (Proof), MPa 270 to 420
290

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 6.6
8.3
Embodied Energy, MJ/kg 92
150
Embodied Water, L/kg 220
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
620
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 21
34
Strength to Weight: Bending, points 20
38
Thermal Diffusivity, mm2/s 3.2
59
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0 to 0.050
Iron (Fe), % 29.9 to 44
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15