MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. 713.0 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 15 to 34
3.9 to 4.3
Fatigue Strength, MPa 210 to 240
63 to 120
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
27
Shear Strength, MPa 380 to 410
180
Tensile Strength: Ultimate (UTS), MPa 610 to 620
240 to 260
Tensile Strength: Yield (Proof), MPa 270 to 420
170

Thermal Properties

Latent Heat of Fusion, J/g 300
370
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 460
860
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 6.6
7.8
Embodied Energy, MJ/kg 92
150
Embodied Water, L/kg 220
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
210 to 220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 21
22 to 23
Strength to Weight: Bending, points 20
28 to 29
Thermal Diffusivity, mm2/s 3.2
57
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0 to 0.35
Copper (Cu), % 3.0 to 4.0
0.4 to 1.0
Iron (Fe), % 29.9 to 44
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0 to 0.15
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25