MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. AWS E90C-D2

Both N08020 stainless steel and AWS E90C-D2 are iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is AWS E90C-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 610 to 620
690
Tensile Strength: Yield (Proof), MPa 270 to 420
620

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
49
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 38
2.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.6
1.6
Embodied Energy, MJ/kg 92
21
Embodied Water, L/kg 220
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
1010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 15
20

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.12
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0 to 0.35
Iron (Fe), % 29.9 to 44
95.5 to 98.6
Manganese (Mn), % 0 to 2.0
1.0 to 1.9
Molybdenum (Mo), % 2.0 to 3.0
0.4 to 0.6
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.035
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5