MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. AWS ER120S-1

Both N08020 stainless steel and AWS ER120S-1 are iron alloys. They have 42% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 34
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 610 to 620
930
Tensile Strength: Yield (Proof), MPa 270 to 420
830

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
46
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 38
4.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.6
1.9
Embodied Energy, MJ/kg 92
25
Embodied Water, L/kg 220
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
1850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
33
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 15
27

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 19 to 21
0 to 0.6
Copper (Cu), % 3.0 to 4.0
0 to 0.25
Iron (Fe), % 29.9 to 44
92.4 to 96.1
Manganese (Mn), % 0 to 2.0
1.4 to 1.8
Molybdenum (Mo), % 2.0 to 3.0
0.3 to 0.65
Nickel (Ni), % 32 to 38
2.0 to 2.8
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5