MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. EN AC-46300 Aluminum

N08020 stainless steel belongs to the iron alloys classification, while EN AC-46300 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 15 to 34
1.1
Fatigue Strength, MPa 210 to 240
79
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 610 to 620
200
Tensile Strength: Yield (Proof), MPa 270 to 420
110

Thermal Properties

Latent Heat of Fusion, J/g 300
490
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
84

Otherwise Unclassified Properties

Base Metal Price, % relative 38
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 6.6
7.7
Embodied Energy, MJ/kg 92
140
Embodied Water, L/kg 220
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 3.2
47
Thermal Shock Resistance, points 15
9.1

Alloy Composition

Aluminum (Al), % 0
84 to 90
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
3.0 to 4.0
Iron (Fe), % 29.9 to 44
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0 to 2.0
0.2 to 0.65
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0 to 0.3
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
6.5 to 8.0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.65
Residuals, % 0
0 to 0.55