MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. C41500 Brass

N08020 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 34
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 380 to 410
220 to 360
Tensile Strength: Ultimate (UTS), MPa 610 to 620
340 to 560
Tensile Strength: Yield (Proof), MPa 270 to 420
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 38
30
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 6.6
2.8
Embodied Energy, MJ/kg 92
45
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
160 to 1340
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
11 to 18
Strength to Weight: Bending, points 20
12 to 17
Thermal Diffusivity, mm2/s 3.2
37
Thermal Shock Resistance, points 15
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
89 to 93
Iron (Fe), % 29.9 to 44
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5