MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. C65400 Bronze

N08020 stainless steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 34
2.6 to 47
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 380 to 410
350 to 530
Tensile Strength: Ultimate (UTS), MPa 610 to 620
500 to 1060
Tensile Strength: Yield (Proof), MPa 270 to 420
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1410
1020
Melting Onset (Solidus), °C 1360
960
Specific Heat Capacity, J/kg-K 460
400
Thermal Conductivity, W/m-K 12
36
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 38
31
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 6.6
2.8
Embodied Energy, MJ/kg 92
45
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
130 to 3640
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
16 to 34
Strength to Weight: Bending, points 20
16 to 27
Thermal Diffusivity, mm2/s 3.2
10
Thermal Shock Resistance, points 15
18 to 39

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0.010 to 0.12
Copper (Cu), % 3.0 to 4.0
93.8 to 96.1
Iron (Fe), % 29.9 to 44
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
2.7 to 3.4
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2