MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. C87900 Brass

N08020 stainless steel belongs to the iron alloys classification, while C87900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 15 to 34
25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 610 to 620
480
Tensile Strength: Yield (Proof), MPa 270 to 420
240

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1410
930
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
24
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 6.6
2.7
Embodied Energy, MJ/kg 92
46
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
270
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 3.2
37
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
63 to 69.2
Iron (Fe), % 29.9 to 44
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.035
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
30 to 36