MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. 2124 Aluminum

N08024 nickel belongs to the nickel alloys classification, while 2124 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08024 nickel and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
5.7
Fatigue Strength, MPa 200
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 410
280
Tensile Strength: Ultimate (UTS), MPa 620
490
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
500
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 41
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 7.2
8.2
Embodied Energy, MJ/kg 99
150
Embodied Water, L/kg 230
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
27
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 21
45
Strength to Weight: Bending, points 20
46
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22.5 to 25
0 to 0.1
Copper (Cu), % 0.5 to 1.5
3.8 to 4.9
Iron (Fe), % 26.6 to 38.4
0 to 0.3
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 35 to 40
0
Niobium (Nb), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15