MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. 5040 Aluminum

N08024 nickel belongs to the nickel alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08024 nickel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
5.7 to 6.8
Fatigue Strength, MPa 200
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 410
140 to 150
Tensile Strength: Ultimate (UTS), MPa 620
240 to 260
Tensile Strength: Yield (Proof), MPa 270
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
130

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 7.2
8.3
Embodied Energy, MJ/kg 99
150
Embodied Water, L/kg 230
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 180
260 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
24 to 26
Strength to Weight: Bending, points 20
31 to 32
Thermal Diffusivity, mm2/s 3.2
64
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition

Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22.5 to 25
0.1 to 0.3
Copper (Cu), % 0.5 to 1.5
0 to 0.25
Iron (Fe), % 26.6 to 38.4
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 1.0
0.9 to 1.4
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 35 to 40
0
Niobium (Nb), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15