MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. AWS E90C-B3

N08024 nickel belongs to the nickel alloys classification, while AWS E90C-B3 belongs to the iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08024 nickel and the bottom bar is AWS E90C-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 620
710
Tensile Strength: Yield (Proof), MPa 270
600

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
41
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 41
4.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 7.2
1.8
Embodied Energy, MJ/kg 99
24
Embodied Water, L/kg 230
59

Common Calculations

PREN (Pitting Resistance) 38
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
970
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0 to 0.030
0.050 to 0.12
Chromium (Cr), % 22.5 to 25
2.0 to 2.5
Copper (Cu), % 0.5 to 1.5
0 to 0.35
Iron (Fe), % 26.6 to 38.4
93.4 to 96.4
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 3.5 to 5.0
0.9 to 1.2
Nickel (Ni), % 35 to 40
0 to 0.2
Niobium (Nb), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.5
0.25 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5