N08024 Nickel vs. EN 1.1133 Steel
N08024 nickel belongs to the nickel alloys classification, while EN 1.1133 steel belongs to the iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is N08024 nickel and the bottom bar is EN 1.1133 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 34 | |
19 to 24 |
Fatigue Strength, MPa | 200 | |
230 to 310 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 79 | |
73 |
Shear Strength, MPa | 410 | |
370 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 620 | |
580 to 620 |
Tensile Strength: Yield (Proof), MPa | 270 | |
320 to 460 |
Thermal Properties
Latent Heat of Fusion, J/g | 310 | |
250 |
Maximum Temperature: Mechanical, °C | 990 | |
400 |
Melting Completion (Liquidus), °C | 1430 | |
1460 |
Melting Onset (Solidus), °C | 1380 | |
1420 |
Specific Heat Capacity, J/kg-K | 460 | |
470 |
Thermal Conductivity, W/m-K | 12 | |
49 |
Thermal Expansion, µm/m-K | 15 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.6 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.8 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 41 | |
2.1 |
Density, g/cm3 | 8.2 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 7.2 | |
1.5 |
Embodied Energy, MJ/kg | 99 | |
19 |
Embodied Water, L/kg | 230 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 170 | |
110 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 180 | |
270 to 550 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 21 | |
21 to 22 |
Strength to Weight: Bending, points | 20 | |
20 to 21 |
Thermal Diffusivity, mm2/s | 3.2 | |
13 |
Thermal Shock Resistance, points | 15 | |
18 to 19 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0.17 to 0.23 |
Chromium (Cr), % | 22.5 to 25 | |
0 to 0.4 |
Copper (Cu), % | 0.5 to 1.5 | |
0 |
Iron (Fe), % | 26.6 to 38.4 | |
96.9 to 98.8 |
Manganese (Mn), % | 0 to 1.0 | |
1.0 to 1.5 |
Molybdenum (Mo), % | 3.5 to 5.0 | |
0 to 0.1 |
Nickel (Ni), % | 35 to 40 | |
0 to 0.4 |
Niobium (Nb), % | 0.15 to 0.35 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.035 | |
0 to 0.035 |