MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. C10500 Copper

N08024 nickel belongs to the nickel alloys classification, while C10500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08024 nickel and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
2.8 to 51
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 410
150 to 210
Tensile Strength: Ultimate (UTS), MPa 620
220 to 400
Tensile Strength: Yield (Proof), MPa 270
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1080
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
390
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 41
32
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 99
42
Embodied Water, L/kg 230
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 180
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
6.8 to 12
Strength to Weight: Bending, points 20
9.1 to 14
Thermal Diffusivity, mm2/s 3.2
110
Thermal Shock Resistance, points 15
7.8 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22.5 to 25
0
Copper (Cu), % 0.5 to 1.5
99.89 to 99.966
Iron (Fe), % 26.6 to 38.4
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 35 to 40
0
Niobium (Nb), % 0.15 to 0.35
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.035
0
Residuals, % 0
0 to 0.050