MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. C63000 Bronze

N08024 nickel belongs to the nickel alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08024 nickel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
7.9 to 15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
44
Shear Strength, MPa 410
400 to 470
Tensile Strength: Ultimate (UTS), MPa 620
660 to 790
Tensile Strength: Yield (Proof), MPa 270
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 990
230
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 460
440
Thermal Conductivity, W/m-K 12
39
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
29
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 7.2
3.5
Embodied Energy, MJ/kg 99
57
Embodied Water, L/kg 230
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 180
470 to 640
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
22 to 26
Strength to Weight: Bending, points 20
20 to 23
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 15
23 to 27

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22.5 to 25
0
Copper (Cu), % 0.5 to 1.5
76.8 to 85
Iron (Fe), % 26.6 to 38.4
2.0 to 4.0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 35 to 40
4.0 to 5.5
Niobium (Nb), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5