MakeItFrom.com
Menu (ESC)

N08024 Nickel vs. C69300 Brass

N08024 nickel belongs to the nickel alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08024 nickel and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
8.5 to 15
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
41
Shear Strength, MPa 410
330 to 370
Tensile Strength: Ultimate (UTS), MPa 620
550 to 630
Tensile Strength: Yield (Proof), MPa 270
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 460
400
Thermal Conductivity, W/m-K 12
38
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 41
26
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 7.2
2.7
Embodied Energy, MJ/kg 99
45
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 180
400 to 700
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
19 to 21
Strength to Weight: Bending, points 20
18 to 20
Thermal Diffusivity, mm2/s 3.2
12
Thermal Shock Resistance, points 15
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22.5 to 25
0
Copper (Cu), % 0.5 to 1.5
73 to 77
Iron (Fe), % 26.6 to 38.4
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 35 to 40
0 to 0.1
Niobium (Nb), % 0.15 to 0.35
0
Phosphorus (P), % 0 to 0.035
0.040 to 0.15
Silicon (Si), % 0 to 0.5
2.7 to 3.4
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5