MakeItFrom.com
Menu (ESC)

N08026 Nickel vs. Titanium 4-4-2

N08026 nickel belongs to the nickel alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08026 nickel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
10
Fatigue Strength, MPa 200
590 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
42
Shear Strength, MPa 410
690 to 750
Tensile Strength: Ultimate (UTS), MPa 620
1150 to 1250
Tensile Strength: Yield (Proof), MPa 270
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 990
310
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 12
6.7
Thermal Expansion, µm/m-K 15
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
39
Density, g/cm3 8.2
4.7
Embodied Carbon, kg CO2/kg material 7.2
30
Embodied Energy, MJ/kg 98
480
Embodied Water, L/kg 240
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
4700 to 5160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 21
68 to 74
Strength to Weight: Bending, points 20
52 to 55
Thermal Diffusivity, mm2/s 3.2
2.6
Thermal Shock Resistance, points 15
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 2.0 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 24.4 to 37.9
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 6.7
3.0 to 5.0
Nickel (Ni), % 33 to 37.2
0
Nitrogen (N), % 0.1 to 0.16
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4