MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. 5657 Aluminum

N08028 stainless steel belongs to the iron alloys classification, while 5657 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
40 to 50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 45
6.6 to 15
Fatigue Strength, MPa 220
74 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 400
92 to 110
Tensile Strength: Ultimate (UTS), MPa 570
150 to 200
Tensile Strength: Yield (Proof), MPa 240
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1370
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
210
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.4
8.4
Embodied Energy, MJ/kg 89
160
Embodied Water, L/kg 240
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
15 to 20
Strength to Weight: Bending, points 19
23 to 28
Thermal Diffusivity, mm2/s 3.2
84
Thermal Shock Resistance, points 12
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 0
98.5 to 99.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 29 to 40.4
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0 to 2.5
0 to 0.030
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 34
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.080
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050