MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. Grade 35 Titanium

N08028 stainless steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
5.6
Fatigue Strength, MPa 220
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
41
Shear Strength, MPa 400
580
Tensile Strength: Ultimate (UTS), MPa 570
1000
Tensile Strength: Yield (Proof), MPa 240
630

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1420
1630
Melting Onset (Solidus), °C 1370
1580
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 12
7.4
Thermal Expansion, µm/m-K 16
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
37
Density, g/cm3 8.1
4.6
Embodied Carbon, kg CO2/kg material 6.4
33
Embodied Energy, MJ/kg 89
530
Embodied Water, L/kg 240
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
49
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1830
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
61
Strength to Weight: Bending, points 19
49
Thermal Diffusivity, mm2/s 3.2
3.0
Thermal Shock Resistance, points 12
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 29 to 40.4
0.2 to 0.8
Manganese (Mn), % 0 to 2.5
0
Molybdenum (Mo), % 3.0 to 4.0
1.5 to 2.5
Nickel (Ni), % 30 to 34
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.2 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4