MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. Grade C-6 Titanium

N08028 stainless steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
290
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 45
9.0
Fatigue Strength, MPa 220
460
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
39
Tensile Strength: Ultimate (UTS), MPa 570
890
Tensile Strength: Yield (Proof), MPa 240
830

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1420
1580
Melting Onset (Solidus), °C 1370
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 12
7.8
Thermal Expansion, µm/m-K 16
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 6.4
30
Embodied Energy, MJ/kg 89
480
Embodied Water, L/kg 240
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
78
Resilience: Unit (Modulus of Resilience), kJ/m3 140
3300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
55
Strength to Weight: Bending, points 19
46
Thermal Diffusivity, mm2/s 3.2
3.2
Thermal Shock Resistance, points 12
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 29 to 40.4
0 to 0.5
Manganese (Mn), % 0 to 2.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 34
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4