MakeItFrom.com
Menu (ESC)

N08028 Stainless Steel vs. C87800 Brass

N08028 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08028 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
25
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 80
86
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 570
590
Tensile Strength: Yield (Proof), MPa 240
350

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
27
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 6.4
2.7
Embodied Energy, MJ/kg 89
44
Embodied Water, L/kg 240
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.2
8.3
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0.6 to 1.4
80 to 84.2
Iron (Fe), % 29 to 40.4
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.5
0 to 0.15
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 30 to 34
0 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 1.0
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5