MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. 357.0 Aluminum

N08031 stainless steel belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
3.4
Fatigue Strength, MPa 290
76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 510
200
Tensile Strength: Ultimate (UTS), MPa 730
350
Tensile Strength: Yield (Proof), MPa 310
300

Thermal Properties

Latent Heat of Fusion, J/g 310
500
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 18
21

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 7.1
8.0
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 240
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
11
Resilience: Unit (Modulus of Resilience), kJ/m3 230
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 25
38
Strength to Weight: Bending, points 22
43
Thermal Diffusivity, mm2/s 3.1
64
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.1
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 1.0 to 1.4
0 to 0.050
Iron (Fe), % 29 to 36.9
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.030
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15