MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. 512.0 Aluminum

N08031 stainless steel belongs to the iron alloys classification, while 512.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is 512.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
2.0
Fatigue Strength, MPa 290
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 730
130
Tensile Strength: Yield (Proof), MPa 310
83

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 7.1
8.8
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 240
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 230
50
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
14
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.1
60
Thermal Shock Resistance, points 14
6.1

Alloy Composition

Aluminum (Al), % 0
90.6 to 95.1
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0 to 0.25
Copper (Cu), % 1.0 to 1.4
0 to 0.35
Iron (Fe), % 29 to 36.9
0 to 0.6
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
1.4 to 2.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15