MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. EN AC-46400 Aluminum

N08031 stainless steel belongs to the iron alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.1 to 1.7
Fatigue Strength, MPa 290
75 to 85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 730
170 to 310
Tensile Strength: Yield (Proof), MPa 310
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
520
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
610
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 18
22

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 7.1
7.8
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 240
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 230
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 25
18 to 32
Strength to Weight: Bending, points 22
26 to 38
Thermal Diffusivity, mm2/s 3.1
55
Thermal Shock Resistance, points 14
7.8 to 14

Alloy Composition

Aluminum (Al), % 0
85.4 to 90.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 1.0 to 1.4
0.8 to 1.3
Iron (Fe), % 29 to 36.9
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 2.0
0.15 to 0.55
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0 to 0.2
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
8.3 to 9.7
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25