MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. EN AC-51100 Aluminum

N08031 stainless steel belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
4.5
Fatigue Strength, MPa 290
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 730
160
Tensile Strength: Yield (Proof), MPa 310
80

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
620
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 7.1
8.7
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 240
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 230
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 3.1
53
Thermal Shock Resistance, points 14
7.3

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 1.0 to 1.4
0 to 0.050
Iron (Fe), % 29 to 36.9
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 2.0
0 to 0.45
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0 to 0.55
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15