MakeItFrom.com
Menu (ESC)

N08031 Stainless Steel vs. C17000 Copper

N08031 stainless steel belongs to the iron alloys classification, while C17000 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08031 stainless steel and the bottom bar is C17000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
1.1 to 31
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
45
Shear Strength, MPa 510
320 to 750
Tensile Strength: Ultimate (UTS), MPa 730
490 to 1310
Tensile Strength: Yield (Proof), MPa 310
160 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1100
270
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 7.1
8.7
Embodied Energy, MJ/kg 96
140
Embodied Water, L/kg 240
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
4.2 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 230
110 to 5420
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
15 to 41
Strength to Weight: Bending, points 22
16 to 30
Thermal Diffusivity, mm2/s 3.1
32
Thermal Shock Resistance, points 14
17 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.6 to 1.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 1.0 to 1.4
96.3 to 98.2
Iron (Fe), % 29 to 36.9
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 30 to 32
0.2 to 0.6
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.5