MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. 6066 Aluminum

N08120 nickel belongs to the nickel alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08120 nickel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
7.8 to 17
Fatigue Strength, MPa 230
94 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
95 to 240
Tensile Strength: Ultimate (UTS), MPa 700
160 to 400
Tensile Strength: Yield (Proof), MPa 310
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.5
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 7.2
8.3
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 240
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 240
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 24
16 to 39
Strength to Weight: Bending, points 21
23 to 43
Thermal Diffusivity, mm2/s 3.0
61
Thermal Shock Resistance, points 17
6.9 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.4
93 to 97
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0 to 0.4
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
0.7 to 1.2
Iron (Fe), % 21 to 41.4
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 1.5
0.6 to 1.1
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.9 to 1.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15