MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. AISI 201LN Stainless Steel

N08120 nickel belongs to the nickel alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. They have 54% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25 to 51
Fatigue Strength, MPa 230
340 to 540
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 470
530 to 680
Tensile Strength: Ultimate (UTS), MPa 700
740 to 1060
Tensile Strength: Yield (Proof), MPa 310
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Mechanical, °C 1000
880
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 45
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
38
Embodied Water, L/kg 240
140

Common Calculations

PREN (Pitting Resistance) 35
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 240
310 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
27 to 38
Strength to Weight: Bending, points 21
24 to 30
Thermal Diffusivity, mm2/s 3.0
4.0
Thermal Shock Resistance, points 17
16 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0 to 0.030
Chromium (Cr), % 23 to 27
16 to 17.5
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
0 to 1.0
Iron (Fe), % 21 to 41.4
67.9 to 73.5
Manganese (Mn), % 0 to 1.5
6.4 to 7.5
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
4.0 to 5.0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0