MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. AWS ER110S-1

N08120 nickel belongs to the nickel alloys classification, while AWS ER110S-1 belongs to the iron alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 700
870
Tensile Strength: Yield (Proof), MPa 310
740

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
47
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 45
4.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 7.2
1.8
Embodied Energy, MJ/kg 100
25
Embodied Water, L/kg 240
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 17
26

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.1
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0 to 0.090
Chromium (Cr), % 23 to 27
0 to 0.5
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 21 to 41.4
92.8 to 96.3
Manganese (Mn), % 0 to 1.5
1.4 to 1.8
Molybdenum (Mo), % 0 to 2.5
0.25 to 0.55
Nickel (Ni), % 35 to 39
1.9 to 2.6
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.1
Tungsten (W), % 0 to 2.5
0
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5