MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. EN 1.0038 Steel

N08120 nickel belongs to the nickel alloys classification, while EN 1.0038 steel belongs to the iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
23 to 25
Fatigue Strength, MPa 230
140 to 160
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 470
240 to 270
Tensile Strength: Ultimate (UTS), MPa 700
380 to 430
Tensile Strength: Yield (Proof), MPa 310
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
49
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 45
2.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 7.2
1.4
Embodied Energy, MJ/kg 100
19
Embodied Water, L/kg 240
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
13 to 15
Strength to Weight: Bending, points 21
15 to 16
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 17
12 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0 to 0.23
Chromium (Cr), % 23 to 27
0 to 0.3
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
0 to 0.6
Iron (Fe), % 21 to 41.4
97.1 to 100
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 2.5
0 to 0.080
Nickel (Ni), % 35 to 39
0 to 0.3
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0 to 0.014
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0