MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. CC767S Brass

N08120 nickel belongs to the nickel alloys classification, while CC767S brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 700
430
Tensile Strength: Yield (Proof), MPa 310
150

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1370
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 45
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 7.2
2.7
Embodied Energy, MJ/kg 100
47
Embodied Water, L/kg 240
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
100
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 3.0
34
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0 to 0.4
0.1 to 0.8
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
58 to 64
Iron (Fe), % 21 to 41.4
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0 to 1.0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
32.8 to 41.9