MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. C17300 Copper

N08120 nickel belongs to the nickel alloys classification, while C17300 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is C17300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
3.0 to 23
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
45
Shear Strength, MPa 470
320 to 790
Tensile Strength: Ultimate (UTS), MPa 700
500 to 1380
Tensile Strength: Yield (Proof), MPa 310
160 to 1200

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1000
270
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 7.2
9.4
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 240
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
40 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 5410
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
16 to 44
Strength to Weight: Bending, points 21
16 to 31
Thermal Diffusivity, mm2/s 3.0
32
Thermal Shock Resistance, points 17
17 to 48

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
95.5 to 97.8
Iron (Fe), % 21 to 41.4
0 to 0.4
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0.2 to 0.6
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Residuals, % 0
0 to 0.5