MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. C19700 Copper

N08120 nickel belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 470
240 to 300
Tensile Strength: Ultimate (UTS), MPa 700
400 to 530
Tensile Strength: Yield (Proof), MPa 310
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
250
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 45
30
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 240
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 240
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
12 to 16
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 3.0
73
Thermal Shock Resistance, points 17
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0 to 0.050
Copper (Cu), % 0 to 0.5
97.4 to 99.59
Iron (Fe), % 21 to 41.4
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0 to 0.050
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0.1 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2