MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. C61000 Bronze

N08120 nickel belongs to the nickel alloys classification, while C61000 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
42
Shear Strength, MPa 470
280 to 300
Tensile Strength: Ultimate (UTS), MPa 700
390 to 460
Tensile Strength: Yield (Proof), MPa 310
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1370
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 11
69
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 45
29
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 7.2
3.0
Embodied Energy, MJ/kg 100
49
Embodied Water, L/kg 240
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
13 to 15
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 3.0
19
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.4
6.0 to 8.5
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
90.2 to 94
Iron (Fe), % 21 to 41.4
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5