MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. C66300 Brass

N08120 nickel belongs to the nickel alloys classification, while C66300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 470
290 to 470
Tensile Strength: Ultimate (UTS), MPa 700
460 to 810
Tensile Strength: Yield (Proof), MPa 310
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 45
29
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 7.2
2.8
Embodied Energy, MJ/kg 100
46
Embodied Water, L/kg 240
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 240
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
15 to 26
Strength to Weight: Bending, points 21
15 to 22
Thermal Diffusivity, mm2/s 3.0
32
Thermal Shock Resistance, points 17
16 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0 to 0.2
Copper (Cu), % 0 to 0.5
84.5 to 87.5
Iron (Fe), % 21 to 41.4
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5