MakeItFrom.com
Menu (ESC)

N08120 Nickel vs. C83600 Ounce Metal

N08120 nickel belongs to the nickel alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08120 nickel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
21
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 700
250
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1420
1010
Melting Onset (Solidus), °C 1370
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 45
31
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 7.2
3.1
Embodied Energy, MJ/kg 100
50
Embodied Water, L/kg 240
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
43
Resilience: Unit (Modulus of Resilience), kJ/m3 240
70
Stiffness to Weight: Axial, points 14
6.7
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
7.9
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 3.0
22
Thermal Shock Resistance, points 17
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.5
84 to 86
Iron (Fe), % 21 to 41.4
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 2.5
0
Nickel (Ni), % 35 to 39
0 to 1.0
Niobium (Nb), % 0.4 to 0.9
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 2.5
0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7