MakeItFrom.com
Menu (ESC)

N08135 Stainless Steel vs. 2618A Aluminum

N08135 stainless steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08135 stainless steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 46
4.5
Fatigue Strength, MPa 220
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 400
260
Tensile Strength: Ultimate (UTS), MPa 570
440
Tensile Strength: Yield (Proof), MPa 240
410

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 6.8
8.4
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
19
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 19
41
Strength to Weight: Bending, points 19
44
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0 to 0.7
1.8 to 2.7
Iron (Fe), % 30.2 to 42.3
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 33 to 38
0.8 to 1.4
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15