MakeItFrom.com
Menu (ESC)

N08221 Nickel vs. 5070 Aluminum

N08221 nickel belongs to the nickel alloys classification, while 5070 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08221 nickel and the bottom bar is 5070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
20
Fatigue Strength, MPa 190
150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 410
190
Tensile Strength: Ultimate (UTS), MPa 610
300
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 44
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.8
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 240
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
51
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 19
37
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.2
92.4 to 95.7
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 22
0 to 0.3
Copper (Cu), % 1.5 to 3.0
0 to 0.25
Iron (Fe), % 22 to 33.9
0 to 0.4
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 5.0 to 6.5
0
Nickel (Ni), % 39 to 46
0
Silicon (Si), % 0 to 0.050
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.0
0 to 0.15
Zinc (Zn), % 0
0.4 to 0.8
Residuals, % 0
0 to 0.15