MakeItFrom.com
Menu (ESC)

N08221 Nickel vs. 5086 Aluminum

N08221 nickel belongs to the nickel alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08221 nickel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.7 to 20
Fatigue Strength, MPa 190
88 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 410
160 to 230
Tensile Strength: Ultimate (UTS), MPa 610
270 to 390
Tensile Strength: Yield (Proof), MPa 270
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 44
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.8
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 240
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 170
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
28 to 40
Strength to Weight: Bending, points 19
34 to 44
Thermal Shock Resistance, points 16
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.2
93 to 96.3
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 22
0.050 to 0.25
Copper (Cu), % 1.5 to 3.0
0 to 0.1
Iron (Fe), % 22 to 33.9
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 5.0 to 6.5
0
Nickel (Ni), % 39 to 46
0
Silicon (Si), % 0 to 0.050
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15