MakeItFrom.com
Menu (ESC)

N08221 Nickel vs. 5088 Aluminum

N08221 nickel belongs to the nickel alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08221 nickel and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
29
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 410
200
Tensile Strength: Ultimate (UTS), MPa 610
310
Tensile Strength: Yield (Proof), MPa 270
150

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 44
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 7.9
9.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 240
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
76
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 19
38
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.2
92.4 to 94.8
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 22
0 to 0.15
Copper (Cu), % 1.5 to 3.0
0 to 0.25
Iron (Fe), % 22 to 33.9
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 5.0 to 6.5
0
Nickel (Ni), % 39 to 46
0
Silicon (Si), % 0 to 0.050
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.0
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15