MakeItFrom.com
Menu (ESC)

N08221 Nickel vs. A535.0 Aluminum

N08221 nickel belongs to the nickel alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08221 nickel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34
9.0
Fatigue Strength, MPa 190
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 610
250
Tensile Strength: Yield (Proof), MPa 270
120

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 44
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 7.9
9.3
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 240
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
19
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 19
33
Thermal Shock Resistance, points 16
11

Alloy Composition

Aluminum (Al), % 0 to 0.2
91.4 to 93.4
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 1.5 to 3.0
0 to 0.1
Iron (Fe), % 22 to 33.9
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 5.0 to 6.5
0
Nickel (Ni), % 39 to 46
0
Silicon (Si), % 0 to 0.050
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.0
0 to 0.25
Residuals, % 0
0 to 0.15