MakeItFrom.com
Menu (ESC)

N08320 Stainless Steel vs. EN 1.4911 Stainless Steel

Both N08320 stainless steel and EN 1.4911 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08320 stainless steel and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
11
Fatigue Strength, MPa 190
530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 400
640
Tensile Strength: Ultimate (UTS), MPa 580
1070
Tensile Strength: Yield (Proof), MPa 220
970

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 430
430
Maximum Temperature: Mechanical, °C 1100
700
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
20
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
20
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 4.9
3.4
Embodied Energy, MJ/kg 69
49
Embodied Water, L/kg 200
130

Common Calculations

PREN (Pitting Resistance) 22
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
2410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
38
Strength to Weight: Bending, points 20
30
Thermal Diffusivity, mm2/s 3.3
5.4
Thermal Shock Resistance, points 13
37

Alloy Composition

Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0 to 0.050
0.050 to 0.12
Chromium (Cr), % 21 to 23
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Iron (Fe), % 40.4 to 50
75.7 to 83.8
Manganese (Mn), % 0 to 2.5
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 25 to 27
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4