MakeItFrom.com
Menu (ESC)

N08320 Stainless Steel vs. EN 1.7378 Steel

Both N08320 stainless steel and EN 1.7378 steel are iron alloys. They have 48% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08320 stainless steel and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
17
Fatigue Strength, MPa 190
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 580
700
Tensile Strength: Yield (Proof), MPa 220
490

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
460
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1350
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 4.9
2.3
Embodied Energy, MJ/kg 69
33
Embodied Water, L/kg 200
61

Common Calculations

PREN (Pitting Resistance) 22
5.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 3.3
10
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0 to 0.050
0.050 to 0.1
Chromium (Cr), % 21 to 23
2.2 to 2.6
Iron (Fe), % 40.4 to 50
94.6 to 96.1
Manganese (Mn), % 0 to 2.5
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 25 to 27
0
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.45
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.050 to 0.1
Vanadium (V), % 0
0.2 to 0.3