MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. 1070 Aluminum

N08330 stainless steel belongs to the iron alloys classification, while 1070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
4.5 to 39
Fatigue Strength, MPa 190
22 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 360
48 to 79
Tensile Strength: Ultimate (UTS), MPa 550
73 to 140
Tensile Strength: Yield (Proof), MPa 230
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
200

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.4
8.3
Embodied Energy, MJ/kg 77
160
Embodied Water, L/kg 190
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 140
2.1 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
7.5 to 14
Strength to Weight: Bending, points 18
14 to 22
Thermal Diffusivity, mm2/s 3.1
94
Thermal Shock Resistance, points 13
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0
99.7 to 100
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
0 to 0.040
Iron (Fe), % 38.3 to 48.3
0 to 0.25
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 2.0
0 to 0.030
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030