MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. 6082 Aluminum

N08330 stainless steel belongs to the iron alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
40 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
6.3 to 18
Fatigue Strength, MPa 190
55 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 360
84 to 220
Tensile Strength: Ultimate (UTS), MPa 550
140 to 340
Tensile Strength: Yield (Proof), MPa 230
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.4
8.3
Embodied Energy, MJ/kg 77
150
Embodied Water, L/kg 190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 140
52 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
14 to 35
Strength to Weight: Bending, points 18
21 to 40
Thermal Diffusivity, mm2/s 3.1
67
Thermal Shock Resistance, points 13
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0 to 0.25
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 38.3 to 48.3
0 to 0.5
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15