MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. 6101A Aluminum

N08330 stainless steel belongs to the iron alloys classification, while 6101A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is 6101A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
11
Fatigue Strength, MPa 190
80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 360
130
Tensile Strength: Ultimate (UTS), MPa 550
220
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1050
160
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
55
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
180

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.4
8.3
Embodied Energy, MJ/kg 77
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
24
Resilience: Unit (Modulus of Resilience), kJ/m3 140
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
30
Thermal Diffusivity, mm2/s 3.1
84
Thermal Shock Resistance, points 13
10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
0 to 0.050
Iron (Fe), % 38.3 to 48.3
0 to 0.4
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Residuals, % 0
0 to 0.1