MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. AISI 418 Stainless Steel

Both N08330 stainless steel and AISI 418 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
17
Fatigue Strength, MPa 190
520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 360
680
Tensile Strength: Ultimate (UTS), MPa 550
1100
Tensile Strength: Yield (Proof), MPa 230
850

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 1050
770
Melting Completion (Liquidus), °C 1390
1500
Melting Onset (Solidus), °C 1340
1460
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
15
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.4
2.9
Embodied Energy, MJ/kg 77
41
Embodied Water, L/kg 190
110

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
38
Strength to Weight: Bending, points 18
29
Thermal Diffusivity, mm2/s 3.1
6.7
Thermal Shock Resistance, points 13
40

Alloy Composition

Carbon (C), % 0 to 0.080
0.15 to 0.2
Chromium (Cr), % 17 to 20
12 to 14
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 38.3 to 48.3
78.5 to 83.6
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 34 to 37
1.8 to 2.2
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.75 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Tin (Sn), % 0 to 0.025
0
Tungsten (W), % 0
2.5 to 3.5