MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. S44535 Stainless Steel

Both N08330 stainless steel and S44535 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 63% of their average alloy composition in common.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
28
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 80
77
Shear Modulus, GPa 76
78
Shear Strength, MPa 360
290
Tensile Strength: Ultimate (UTS), MPa 550
450
Tensile Strength: Yield (Proof), MPa 230
290

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1050
1000
Melting Completion (Liquidus), °C 1390
1430
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.4
Embodied Energy, MJ/kg 77
34
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 19
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 3.1
5.6
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 20
20 to 24
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 38.3 to 48.3
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0.75 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Tin (Sn), % 0 to 0.025
0
Titanium (Ti), % 0
0.030 to 0.2