MakeItFrom.com
Menu (ESC)

N08330 Stainless Steel vs. S44627 Stainless Steel

Both N08330 stainless steel and S44627 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 63% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08330 stainless steel and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
24
Fatigue Strength, MPa 190
200
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 80
79
Shear Modulus, GPa 76
80
Shear Strength, MPa 360
310
Tensile Strength: Ultimate (UTS), MPa 550
490
Tensile Strength: Yield (Proof), MPa 230
300

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 420
470
Maximum Temperature: Mechanical, °C 1050
1100
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1340
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
14
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.9
Embodied Energy, MJ/kg 77
41
Embodied Water, L/kg 190
160

Common Calculations

PREN (Pitting Resistance) 19
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.1
4.6
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 17 to 20
25 to 27.5
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 38.3 to 48.3
69.2 to 74.2
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 34 to 37
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0.75 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Tin (Sn), % 0 to 0.025
0