MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. 5010 Aluminum

N08366 stainless steel belongs to the iron alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
1.1 to 23
Fatigue Strength, MPa 190
35 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 390
64 to 120
Tensile Strength: Ultimate (UTS), MPa 590
100 to 210
Tensile Strength: Yield (Proof), MPa 240
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
630
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 13
200
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
150

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.2
8.2
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 150
10 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
10 to 22
Strength to Weight: Bending, points 19
18 to 29
Thermal Diffusivity, mm2/s 3.4
82
Thermal Shock Resistance, points 13
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 20 to 22
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 42.4 to 50.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
0.1 to 0.3
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15