MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. 518.0 Aluminum

N08366 stainless steel belongs to the iron alloys classification, while 518.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
80
Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 34
5.0
Fatigue Strength, MPa 190
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 390
200
Tensile Strength: Ultimate (UTS), MPa 590
310
Tensile Strength: Yield (Proof), MPa 240
190

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 13
98
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
81

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.2
9.4
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
14
Resilience: Unit (Modulus of Resilience), kJ/m3 150
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 3.4
40
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
88.1 to 92.5
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 42.4 to 50.5
0 to 1.8
Magnesium (Mg), % 0
7.5 to 8.5
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.25